Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lin-Hai Jing, ${ }^{\text {a }}{ }^{*}$ Da-Bin Qin, ${ }^{\text {a }}$
Zhi-Hua Mao, ${ }^{\text {b }}$ Shao-Jin Gu ${ }^{\text {a }}$ and Huan-Xia Zhang ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, China West Normal University, Nanchong 637002, People's Republic of China, and ${ }^{\mathbf{b}}$ The Centre of Test and Analysis, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: jlhhxg@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.059$
$w R$ factor $=0.191$
Data-to-parameter ratio $=11.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Dimethyl naphthalene-1,4-dicarboxylate

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$, the two ester groups are twisted away from the attached ring by 25.3 (3) and 14.6 (3) ${ }^{\circ}$. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

1,4-Naphthalenedicarboxylic acid derivatives are a class of intermediates important for applications as monomers in the preparation of polymers (Fukuzumi et al., 1994; Tsukada et al., 1994) or printing receptors (Kuromya et al., 1997). We report here the crystal structure of the title compound, (I).

(I)

The bond lengths and angles in (I) are normal (Table 1). The naphthalene ring system is planar within 0.023 (3) \AA. As a result of steric effects, the substituent groups at atoms C 1 and C 4 are twisted away from the plane of the naphthalene ring system (Fig. 1). The O1/O2/C11/C12 and O3/O4/C13/C14 planes form dihedral angles of 25.3 (3) and $14.6(3)^{\circ}$, respectively, with the C1-C4/C9/C10 plane. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.

Received 21 November 2005 Accepted 23 November 2005 Online 30 November 2005

Experimental

Compound (I) was prepared according to the reported precedure of Altunda \& Balci (1993). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from methanol.

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
$M_{r}=244.24$
Triclinic, $P \overline{1}$
$a=7.979$ (6) \AA
$b=9.222$ (4) \AA
$c=9.653(5) \AA$
$\alpha=75.54(4)^{\circ}$
$\beta=69.18(5)^{\circ}$
$\gamma=65.39(4)^{\circ}$
$V=599.3(7) \AA^{3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none 2127 measured reflections
2087 independent reflections
1022 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.191$
$S=0.94$
2087 reflections
189 parameters

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.354 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 18 \\
& \quad \text { reflections } \\
& \theta=4.5-7.4^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=291(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.25 \times 0.22 \times 0.22 \mathrm{~mm} \\
& \\
& \theta_{\max }=25.0^{\circ} \\
& h=-8 \rightarrow 9 \\
& k=-7 \rightarrow 10 \\
& l=-10 \rightarrow 11 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 300 \text { reflections } \\
& \quad \text { intensity decay: } 1.5 \%
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1139 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.28 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

O1-C11	$1.321(4)$	$\mathrm{O} 3-\mathrm{C} 14$	$1.442(4)$
$\mathrm{O} 1-\mathrm{C} 12$	$1.447(4)$	$\mathrm{O} 4-\mathrm{C} 13$	$1.197(4)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.188(4)$	$\mathrm{C} 1-\mathrm{C} 11$	$1.490(4)$
$\mathrm{O} 3-\mathrm{C} 13$	$1.325(4)$	$\mathrm{C} 4-\mathrm{C} 13$	$1.494(4)$
$\mathrm{C} 11-\mathrm{O} 1-\mathrm{C} 12$	$116.6(3)$	$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 1$	$112.1(3)$
$\mathrm{C} 13-\mathrm{O} 3-\mathrm{C} 14$	$117.9(3)$	$\mathrm{O} 4-\mathrm{C} 13-\mathrm{O} 3$	$120.8(3)$
O2-C11-O1	$121.6(3)$	$\mathrm{O} 4-\mathrm{C} 13-\mathrm{C} 4$	$127.0(3)$
O2-C11-C1	$126.3(3)$	$\mathrm{O} 3-\mathrm{C} 13-\mathrm{C} 4$	$112.2(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.90 (4)	2.33 (4)	2.688 (5)	104 (3)
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}$	0.96 (4)	2.25 (3)	2.652 (5)	105 (3)
C5-H5 \cdots O 4	0.99 (4)	2.15 (4)	2.879 (6)	128 (3)
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {i }}$	0.98 (5)	2.54 (5)	3.440 (6)	154 (3)
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2^{\text {ii }}$	1.00 (4)	2.56 (3)	3.362 (6)	137 (2)
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O} 2$	0.89 (3)	2.23 (3)	2.891 (6)	130 (3)

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $-x+2,-y+1,-z$.

Aromatic H atoms were located in a difference Fourier map and refined isotropically. The range of $\mathrm{C}-\mathrm{H}$ bond lengths is 0.89 (3)1.00 (3) A. Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and included in the final cycles of refinement using a riding model $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right.$. A rotating group model was used for the methyl groups.

Data collection: DIFRAC (Gabe \& White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Centre for Test and Analysis, Sichuan University, for financial support.

References

Altunda, R. \& Balci, M. (1993). Tetrahedron, 49, 6521-6526.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fukuzumi, T., Tajiri, T., Tsukada, H. \& Yoshida, J. (1994). Jpn Patent JP 06298 919.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gabe, E. J. \& White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting, Abstract PA104.
Kuromya, Y., Hirano, E. \& Samu, F. (1997). Jpn Patent JP 09048177.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tsukada, H., Tajiri, T., Fukuzumi, T. \& Yoshida, J. (1994). Jpn Patent JP 06298 918.

